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Abstract. Being the parent distribution in Romania, the Pearson III distribution (PE3) is 
one of the statistical distributions that is most frequently used in flood frequency analysis 
(FFA). All the components required for the simple implementation of PE3 distribution in 
FFA are presented in this manuscript. The estimated methods and exact and approximate 
relationships for estimating the parameters and frequency factors particular to the 
distribution are described. All of these factors are used to identify maximum flows with 
various annual exceedance probabilities, using data collected at the 6 rivers with different 
morphometric characteristics and different lengths of data series. Five parameter 
estimation techniques are used in this comparative analysis, i.e. the method of ordinary 
moments (MOM), the method of linear moments (L-moments), the high-order linear 
moments method (LH-moments), the method of maximum likelihood (MLE) and the method 
of least squares (LSM). Given the results, it can be assumed that the L-moments approach 
is more reliable, stable, robust and less sensitive to variations in recorded data lengths, as 
well as to the presence of outliers. 

Key words: approximate form; confidence interval; estimation parameters; frequency 
factors; method of ordinary moments; method of linear moments; Pearson III. 

1. Introduction 

The flood frequency analysis (FFA) enables the computation of values with a 
certain likelihood of occurrence, which is crucial in the management of water resources 
and the design of hydrotechnical projects. 

The Pearson III (PE3) distribution is one of the distributions that is most 
frequently employed in the statistical analysis of extreme data, along with the Log-
Normal, GEV, and Log-Pearson distributions [1-7]. The PE3 distribution was applied, 
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using different parameter estimation methods, for the frequency analysis of floods in [5, 
8–10], the frequency analysis of maximum precipitation in [11–13], and the low flow 
frequency analysis in [4, 14]. In the investigation of flood frequency in Romania, PE3 
serves as the parent distribution [7, 10]. 

The distribution is a special case of the four-parameter gamma distribution and a 
generalized version of the two-parameter gamma distribution. It is a member of the 
family of gamma distributions. In Romania, the PE3 distribution is used exclusively 
using the method of ordinary moments using the Foster-Ribkin table and linear 
interpolation, an approach that represents a legacy of the Soviet influence, inferior 
compared to modern methods of analysis. 

Without closed forms, the cumulative complementary function (CDF) and the 
inverse function (quantile) of the PE3 distribution are represented in this article using 
predefined Mathcad functions that are comparable to other functions from other 
specialized programs (Excell). 

For the method of ordinary moments (MOM), L-moments method and LH-
moments, the quantile function can also be represented with the frequency factor, which 
is a real help considering the inverse function is defined by the gamma function. 

In general, the PE3 distribution is applied using the MOM and L-moments 
parameter estimation methods, which are two of the most used parameter estimation 
methods in FFA [1, 4, 5, 10]. In comparison to other parameter estimate approaches, the 
L-moments method is renowned for being far more stable and less subject to bias 
[5,8,14,15]. The higher order linear moments (LH-moments) approach can be used to 
generate the "separation effect" [16]. Without explicit sample censoring, Wang 
proposed this method in 1997 [17], and it quickly rose to become one of the FFA's most 
used techniques. Only when FFA is employing the Annual Maximum Series (AMS) is 
its use advised. This approach lessens the impact of small maximum values in the 
frequency analysis by generalizing the approach of linear moments. As a result, high 
maximum values—always reflecting floods—are given more significance. 

Regarding parameter estimation with MOM, it is generally preferred because the 
estimation relationships are simple and easy to use. However, it presents the 
disadvantage of the fact that higher-order statistical indicators (skewness and kurtosis) 
require correction. A solution to correct the skewness coefficient is represented by the 
approach of Bobee and Robitaille [1,2,5]. In Romania, this impediment was partially 
solved by choosing the skewness depending on the genesis of the maximum flows. Thus, 
according to Romanian regulations [18], a coefficient of 2 is chosen if the maximum 
flows come exclusively from snow melt, a coefficient of 3 if the origin is mixed (snow 
melt and rain), respectively a coefficient of 4 if the maximum flows come exclusively 
from rains. Unfortunately, this approach is often used incorrectly and excessively, 
because it is only valid for hydrographic basins with a surface of less than 100 km2, 
because it uses an approximation considering the coefficient of variation having the 
value 1 and the maximum flows having the genesis exclusively from rains. 

To estimate the parameters with L-moments (and also for MLE and LSM), it is 
necessary to solve a system of nonlinear equations, which leads to some difficulties. 
Thus, for the ease use of it, parameters approximation relations (for L-moments) are 
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presented, using polynomial, exponential or rational functions. An important 
contribution, was made by Hosking [8] who for the first time presented relations for the 
estimation of the shape parameter within the complete domain of L-skewness, relations 
improved by Anghel and Ilinca [7]. 

For the LH-moments method, important contributions were made by [32-41], in 
which a significant number of distributions were analyzed, among which the most 
important are Wakeby, Lambda, Pearson V, the CHI, the inverse CHI, the Wilson–
Hilferty, the Pseudo-Weibull, the Log-normal, the generalized Pareto Type I and the 
Fréchet distributions. 

Regarding the least squares method, the manuscript presents a comparative 
analysis that identifies the best empirical probability that fits the PE3 distribution, so 
that by sampling the errors on the three levels (statistical indicators, estimation of 
parameters and quantities) to be as small as possible. 

For the maximum likelihood method, the parameters of the PE3 distribution have 
a valid solution only if the skewness coefficient is lower than 2, an aspect noted both in 
the present analysis and in the observations of other researchers [5].  

Given that uncertainties are a part of all statistical analyses, the relationships for 
calculating the confidence interval for the Pearson III distribution—which is required to 
quantify uncertainties—are described using both the Chow [19] (for MOM, L- and LH-
moments) and Kite approximations (for MOM) [5]. The Chow’s relation, for a 95% 
confidence level, is based on a Gaussian assumption, being a simplified approach. In 
general, all the quantiles that exceed the probabilities of the recorded values are 
characterized by a significant degree of uncertainty since the observed data is relatively 
short in duration. There are three levels of uncertainty due to the bias introduced by the 
fluctuation in the length of the recorded data, which must be considered when estimating 
the statistical indicators unique to the used method as well as when determining the 
values of the parameters and quantiles. These levels of uncertainty, which are distinctive 
to the Pearson III distribution, along with the estimate techniques and the range of data 
lengths, are presented in the text.  

Thus, in order to highlight all these particular aspects of the PE3 distribution 
using these 5 parameter estimation methods, a comparative analysis is presented on 6 
case studies, with different morphometric and statistical characteristics. 

2. Methods 

2.1.  Probability Density Function and Cumulative Distribution Function 
 
The probability density function, 𝑓ሺ𝑥ሻ and the complementary cumulative 

distribution function 𝐹ሺ𝑥ሻ, for PE3 are [5,7,20]: 
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where 𝛼, 𝛽, 𝛾 are the shape, the scale and the position parameters and 𝑥 can take 
any values of range 𝛾 ൏ 𝑥 ൏ ∞ if 𝛽 ൐ 0 or െ∞ ൏ 𝑥 ൏ 𝛾 if  𝛽 ൏ 0 and 𝛼 ൐ 0.  

 
2.2.  Quantile function 
The PE3 distribution does not have a closed form for the inverse function 𝑥ሺ𝑝ሻ. 

This can be expressed using predefined functions from dedicated programs, such as: 
𝑞𝑔𝑎𝑚𝑚𝑎 function (Mathcad), 𝑔𝑎𝑚𝑚𝑎. 𝑖𝑛𝑣 function (Excell), etc. In this article, the 
relationships are defined using predefined functions in Mathcad. 

The quantile of the PE3 distribution has the following expression:  

𝑥ሺ𝑝ሻ ൌ 𝑥൫𝐹ሺ𝑥ሻ൯ ൌ 𝐹ሺ𝑥ሻିଵ ൌ 𝛾 ൅ 𝛽 ⋅ 𝑞𝑔𝑎𝑚𝑚𝑎ሺ1 െ 𝑝, 𝛼ሻ 
3) 

where 𝑝 is the probability of exceedance. If 𝛽 ൏ 0 (negative skewness) then the 
first argument of the inverse of the distribution function Gamma, 𝛤ିଵሺ1 െ 𝑝; 𝛼ሻ 
becomes  𝛤ିଵሺ𝑝; 𝛼ሻ. 

The built-in function from Mathcad 𝑞𝑔𝑎𝑚𝑚𝑎ሺ1 െ 𝑝, 𝛼ሻ ൌ 𝛾ିଵ൫ሺ1 െ 𝑝ሻ ⋅
𝛤ሺ𝛼ሻ, 𝛼൯, returns the inverse cumulative probability distribution for probability p, for 
the Gamma distribution, where 𝛾ିଵ is the inverse of the lower incomplete gamma 
function. 

Based on the frequency factor, the inverse functions for MOM, L-moments, and 
LH-moments can be written as follows: 

𝑥ሺ𝑝ሻ ൌ 𝜇 ൅ 𝜎 ⋅ 𝐾ெைெሺ𝑝, 𝛼ሻ (4) 

𝑥ሺ𝑝ሻ ൌ 𝐿ଵ ൅ 𝐿ଶ ⋅ 𝐾௅ሺ𝑝, 𝛼ሻ (5) 

𝑥ሺ𝑝ሻ ൌ 𝐿ுଵ ൅ 𝐿ுଶ ⋅ 𝐾௅ுሺ𝑝, 𝛼ሻ (6) 
 
where 𝜇 is the expectation and 𝜎   is the standard deviation; 𝐿ଵ and 𝐿ଶ are the 

first two L-moments; 𝐿ுଵ and 𝐿ுଶ are the first two LH-moments; 𝐾ெைெሺ𝑝, 𝛼ሻ, 𝐾௅ሺ𝑝, 𝛼ሻ 
and 𝐾௅ுሺ𝑝, 𝛼ሻ represent the frequency factors for estimating the parameters with MOM 
L-moments and LH-moments.  

 The exact relationships for frequency factors, are: 

𝐾ெைெሺ𝑝, 𝛼ሻ ൌ
𝑞𝑔𝑎𝑚𝑚𝑎ሺ1 െ 𝑝, 𝛼ሻ െ 𝛼

√𝛼
 (7) 

𝐾௅ሺ𝑝, 𝛼ሻ ൌ
√𝜋 ⋅ 𝛤ሺ𝛼ሻሺ𝑞𝑔𝑎𝑚𝑚𝑎ሺ1 െ 𝑝, 𝛼ሻ െ 𝛼ሻ

𝛤ሺ𝛼 ൅ 0.5ሻ
 (8) 
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𝐾௅ுሺ𝑝, 𝛼ሻ ൌ

2
3 ⋅ ሺ𝑞𝑔𝑎𝑚𝑚𝑎ሺ1 െ 𝑝, 𝛼ሻ െ 2 ⋅ 𝑧ଶሻ

𝑧ଵ
 (9) 

 
where the expressions for 𝑧ଵ and 𝑧ଶ can be found in section 2.3. 
Numerous approximation relations of the frequency factor are published in the 

literature [5] for MOM estimation, the most significant being the Kite approximation, 
for |𝐶௦| ൏ 2, the Cornish-Fisher approximation, for |𝐶௦| ൏ 2, the Wilson-Hilferty 
approximation, for |𝐶௦| ൏ 2, the modified Wilson-Hilferty approximation, for 0.25 ൑
𝐶௦ ൑ 9.75. 

The frequency factor with MOM can also be approximated using a polynomial 
development in skewness (𝐶௦): 

𝐾ெைெሺ𝑝, 𝐶௦ሻ ൌ 𝑎 ൅ 𝑏 ⋅ 𝐶௦ ൅ 𝑐 ⋅ 𝐶௦ଶ ൅ 𝑑 ⋅ 𝐶௦ଷ ൅ 𝑒 ⋅ 𝐶௦ସ ൅ 𝑓 ⋅ 𝐶௦ହ ൅ 𝑔 ⋅ 𝐶௦଺ ൅ ℎ ⋅ 𝐶௦଻ 
(10)

Table 1 lists the polynomial function coefficients for the annual exceedance 
probability that are utilized the most in technical hydrology. 

Table 1 
Coefficients of the approximation function with MOM 

P 
[%] 

a b c d e f g h 

0.01 3.71828 2.1462 0.15579 -0.0769315 0.0150378 -0.0017271 0.0001106 -0.00000303

0.1 3.09014 1.42629 0.049631 -0.0421189 0.00794983 -0.00083309
0.0000479

4 
-0.00000118

0.5 2.57601 0.937811 -0.00485114 -0.024367 0.00459158 -0.0004292
0.0000204

7 
-0.00000038

1 2.32661 0.733146 -0.0218707 -0.0185502 0.00358677 -0.00031539
0.0000130

2 
-0.00000017

2 2.05408 0.533496 -0.034201 -0.0138703 0.00286305 -0.00023957
0.0000083

1 
-0.000000042

3 1.88115 0.419782 -0.0389303 -0.0116643 0.00257668 -0.00021375
0.0000068

7 
-0.000000006

5 1.64524 0.280836 -0.0418754 -0.0094549 0.00237315 -0.00020267
0.0000065

7 
0.000000000

5

10 1.28196 0.103328 -0.0395043 -0.0074825 0.00241382 -0.00023132
0.0000089

9 
-0.00000008

20 0.842052 -0.052671 -0.027535 -0.0068667 0.002969 -0.00033372
0.0000144

5 
-0.00000016

40 0.254237 -0.164334 0.0070463 -0.015678 0.0078439 -0.0013773
0.0001062

1 
-0.00000308

50 
0.000692

1 
-0.174131 0.019451 -0.018001 0.010156 -0.002096 

0.0001892
1 

-0.00000639

80 -0.845883 -0.010892 -0.041893 0.064938 -0.022096 0.0033839 -0.0002494 0.0000072
Given that the frequency factor is stated using the Gamma function, which can 

be challenging to calculate, an approximation relation based on the L-skewness and 
annual exceedance probability is presented. The approximation is the following 
polynomial relation: 
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𝐾்௅ሺ𝑝, 𝜏ଷሻ ൌ 𝑎 ൅ 𝑏 ⋅ 𝜏ଷ ൅ 𝑐 ⋅ 𝜏ଷଶ ൅ 𝑑 ⋅ 𝜏ଷ
ଷ 

(11)
 
In Table 2, the coefficients of the polynomial function for the most popular 

annual exceedance probabilities are shown. 
 

Table 2 
Coefficients of the approximation function with L-moments 

P 
 [%] 

a b c d 

0.01 6.590 23.38 17.214 -3.7117 
0.1 5.4765 15.559 8.986 0.47591 
0.5 4.5651 10.245 4.4167 1.5525 
1 4.1231 8.0174 2.8187 1.5366 
2 3.6401 5.8441 1.4754 1.2797 
3 3.3336 4.6063 0.81958 1.042 
5 2.9154 3.094 0.14699 0.66702 
10 2.2715 1.1625 -0.45319 0.08242 
20 1.4918 -0.53214 -0.63128 -0.39305 
40 0.44907 -1.699 -0.25238 -0.49031 
50 0.0000044 -1.814 0.00423 -0.28014 
80 -1.4918 -0.52533 0.62038 0.92798 
90 -2.2715 1.1681 0.44733 1.14 

The three parameters' values vary depending on the estimating technique 
employed. The relationships for estimating the parameters of the PE3 distribution 
described in the section that follows. 

 
2.3. Parameter estimation  
The parameter estimation is presented for MOM, L-moments and LH-moments, 

common methods in flood frequency analysis. The advantage of these methods is that 
they are characterized by statistical indicators (expected value, coefficient of variation, 
skewness, L-skewness, and LH-kurtosis) that can be determined regionally. Regarding 
the LH-moments method, only the relationships for the 1st order level are analyzed, 
because an alternative to the analysis using the Annual Exceedance Series (AES) is 
desired. 

The distribution parameters' expressions for MOM estimation can be found in [5, 
10]. Regarding the parameter estimation with L-moments, using the quantile function, 
the exact parameter estimate for the L-moment technique is carried out numerically 
(definite integrals). Using the Gaussian Quadrature method, the integrals are 
numerically determined. But, an approximate form of parameter estimation can be 
adopted, because the third L-moments (𝐿ଷ) and L-skewness (𝜏ଷ ൌ 𝐿ଷ/𝐿ଶ), depends only 
on the shape coefficient [7,8].  

Like the L-moments method, exact equations for estimation with LH-moments 
are obtained from solving a system of nonlinear equations using defined integrals. For 
this method, LH-skewness is also characterized only by the shape parameter. Thus, it 
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was possible to obtain approximate relations for estimating this parameter, giving values 
for LH-skewness. Thus, for the LH−moments method, 𝛼 can be approximate with the 
next relation: 

If  0.12 ൏ |𝜏ுଷ| ൑ 0.34: 

𝛼 ൌ 𝑒𝑥𝑝

⎝

⎜⎜
⎛

7757.0921831൅40914.6033757 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻ ൅
93713.9484593 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻଶ ൅ 121792.0331514 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻଷ ൅
98255.1222272 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻସ ൅ 50397.8680523 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻହ ൅
16054.8135102 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻ଺ ൅ 2904.9945626 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻ଻ ൅
228.664592 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻ଼ ⎠

⎟⎟
⎞

 (12) 

If  0.34 ൏ |𝜏ுଷ| ൑ 0.85: 

𝛼 ൌ 𝑒𝑥𝑝

⎝

⎜⎜
⎛

െ13.4247904 െ 121.5293664 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻ െ
649.9763722 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻଶ െ 2075.3170378 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻଷ െ
4110.4652507 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻସ െ 5114.9286399 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻହ െ
3890.8525714 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻ଺ െ 1653.2523283 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻ଻ െ
300.612615 ⋅ 𝑙𝑛ሺ|𝜏ுଷ|ሻ଼ ⎠

⎟⎟
⎞

 (13) 

𝛽 ൌ
2 ⋅ 𝐿ுଶ
3 ⋅ 𝑧ଵ

 (14) 

𝛾 ൌ 𝐿ுଵ െ 2 ⋅ 𝛽 ⋅ 𝑧ଶ (15) 

where, 𝑧ଵ ൌ ׬ 𝑞𝑔𝑎𝑚𝑚𝑎ሺ𝑝, 𝛼ሻ ⋅ ሺ3 ⋅ 𝑝ଶ െ 2 ⋅ 𝑝ሻ ⋅ 𝑑𝑝
ଵ

଴
, which can be 

approximated with the following equation: 

𝑧ଵ ൌ
െ0.00315255൅0.87292281 ⋅ 𝛼 ൅ 0.18314623 ⋅ 𝛼ଶ

ቀ1 ൅ 2.01526823 ⋅ 𝛼 ൅ 0.07089912 ⋅ 𝛼ଶ െ
0.00034641 ⋅ 𝛼ଷ ൅ 0.00000094 ⋅ 𝛼ସ

ቁ
 

(16) 

and, 𝑧ଶ ൌ ׬ 𝑞𝑔𝑎𝑚𝑚𝑎ሺ𝑝, 𝛼ሻ ⋅ 𝑝 ⋅ 𝑑𝑝
ଵ

଴
, which can be approximated with the 

following equation: 

𝑧ଶ ൌ
ቀ0.01180195 ൅ 0.87724953 ⋅ 𝛼 ൅ 0.46798927 ⋅ 𝛼ଶ ൅
0.01808637 ⋅ 𝛼ଷ ൅ 0.00004649 ⋅ 𝛼ସ

ቁ

1 ൅ 0.80457526 ⋅ 𝛼 ൅ 0.03470298 ⋅ 𝛼ଶ ൅ 0.0000921 ⋅ 𝛼ଷ
 

(17) 

 
The MLE method is an easy method for estimating the parameters of a theoretical 

distribution, which consists in the logarithm and the derivation of the objective function, 
the latter being the product of the probability density function. By deriving the 
logarithmic objective function depending on the parameters of the theoretical 
distribution and minimizing them, the following system of a nonlinear equation results 
that leads to the determination of the position parameter [5,20]. 

The least squares method is a less used method because the estimation of the 
parameters is not robust, it can be used for an initial estimation of the parameters used 
as kernels for methods using the gradient method. It is a method that uses the cumulative 
function of the theoretical distribution [5,10,20].  
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3. Case Studies 

As case studies, the frequency analysis of the maximum flows on 6 rivers 
(Ialomita, Siret, Bahna, Jijia, Nicolina and Viseu) with different morphometric and 
statistical characteristics is carried out.  

Figure 1 shows the locations of the six monitoring stations, for the six studied 
rivers. 

The analysis period varies, each monitoring station being characterized by a 
length of measurements greater than 20 years. 

In the case of the analysis using the method of ordinary moments, the skewness 
coefficient is chosen according to the genesis of the flows, by multiplying the coefficient 
of variation of the analyzed data by a coefficientt ( ), in order to reflect this genesis. 
The mathematical meaning of statistical indicators can be found in reference materials 
such as [7,10]. 

 

 
Fig. 1. Location of the six analyzed rivers. 

The most important morphometric information regarding the rivers analyzed are 
highlighted in Table 3 [21]. 

Table 3 
The morphometric elements for the analyzed rivers. 

River Length 
[km] 

Average  
Stream Slope [‰]

Sinuosity 
Coefficient [−] 

Average 
Altitude, [m] 

Catchments
Area, [km2] 

Ialomita 417 1.5 1.88 327 10350 
Siret 559 1.7 1.86 515 42890 
Jijia 275 1.0 1.45 152 5757 

Bahna 35 28 1.45 559 137 
Nicolina 20 16 1.37 138 177 

Viseu 82 15 1.31 1011 1581 

 
Tables 4 and 5 list the statistical indicator values for the examined data sets.  
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Table 4 
The statistical indicators for the analyzed rivers: MOM 

River 
Number of 

records 
(n) 

Hydrometric
 Station 

MOM 
𝜉 𝜇 𝐶௩ 𝐶௦ 

[−] [m3/s] [−] [−] 
Ialomita 33 Tandarei 2 224 0.527 0.33 

Siret 39 Lungoci 2 1443 0.634 1.41 
Jijia 35 Vladeni 3 56.1 0.824 1.85 

Bahna 30 Bahna 3 13.3 1.519 3.11 
Nicolina 39 Iasi 3 14.1 1.193 2.80 

Viseu 20 Bistra 3 392 0.694 2.66 

Table 5 
The statistical indicators for the analyzed rivers: L-and LH-moments method 

River 
L-moments method LH-moments method 

𝐿ଵ 𝐿ଶ 𝐿ଷ 𝐿ସ 𝜏ଶ 𝜏ଷ 𝜏ସ 𝐿ுଵ 𝐿ுଶ 𝐿ுଷ 𝐿ுସ 𝜏ுଶ 𝜏ுଷ 𝜏ுସ 
[m3/s] [m3/s] [m3/s] [m3/s] [−] [−] [−] [m3/s] [m3/s] [m3/s] [m3/s] [−] [−] [−]

Ialomita 224 68.6 6.13 1.69 0.306 0.089 0.025 293 56.1 5.22 2.30 0.191 0.093 0.041
Siret 1443 490 112 90.6 0.339 0.228 0.185 1932 451 135 89.9 0.233 0.299 0.199
Jijia 56.1 23.2 7.86 6.01 0.414 0.338 0.259 79.4 23.3 9.25 6.13 0.294 0.396 0.263

Bahna 13.3 8.10 4.91 3.52 0.608 0.608 0.436 21.3 9.73 5.62 3.68 0.456 0.577 0.378
Nicolina 14.1 7.55 3.60 2.22 0.536 0.477 0.294 21.6 8.36 3.88 2.34 0.386 0.464 0.280

Viseu 392 121 63.5 49.3 0.309 0.525 0.407 513 138 75.2 53.0 0.270 0.543 0.383

Results and Discussions 

The analysis's goal is to assess how well the methods provided here perform in 
order to forecast the values of the quantiles corresponding to rare and very rare events.  

Considering that the quantile values are the ones of interest, the presented results 
will be based on this aspect. Figure 2 shows the results obtained on the 6 case studies, 
using the 5 analyzed estimation methods, as well as the confidence interval for the L-

moments method. For plotting positions, the Hazen formula was used (𝑃 ൌ
ሺ௜ି଴.ହሻ

௡
) [19].  

(a) Ialomita  (b) Siret
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(c) Jijia  (d) Bahna 

(e) Nicolina  (f) Viseu

Fig. 2. Evaluations of the quantile function for the five methods of parameter estimation. 
 
The confidence interval is built for L-moments, based on Chow’s approximation 

[1, 5, 10] defined for a statistical distribution for 90% confidence level (10% 
significance level). This assumes that the confidence interval is a variable function of 
the probability and standard error specific to each statistical distribution [5, 19].  

Analyzing the obtained results, it can be observed that for the data series with 
skewness greater than 2 (Nicolina, Viseu and Bahna), the maximum likelihood method 
has no solution, the generated quantile values being characterized by very large errors, 
the errors increasing togheter with the increase of the skewness value. 

In the case of the method of ordinary moments, the resulting values are 
significantly influenced by the small length of the data series, an aspect that can also be 
observed in the case of the Viseu river (n=20 values). This aspect is due to the 
particularities of the method, the errors being directly proportional to the increase in the 
degree of the statistical indicators that need to be calibrated (variance and skewness). 
Also, the establishment of skewness based on the genesis of the flows (without a 
complex analysis regarding this genesis), implies a subjective nature of the analysis 
which is a disadvantage. These errors are accentuated when, for basins larger than 100 
km2, the simplified approach is usually used, considering the variation coefficient as 1 
and the multiplication coefficient as 4. For comparison, the graph of the curves 
corresponding to the three values of the multiplication coefficient for the Siret river is 
presented. This subjective character also appears in the case of the least squares method, 
many researchers choosing the Weibull probability as the predefined empirical 
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probability, which otherwise leads to significant deviations. The empirical probability 
must be established depending on the estimation method and the nature of the 
distribution used. Important contributions regarding this aspect have been made in 
recent materials [22], the Hazen empirical probability being the one that generates the 
smallest deviations from the theoretical values of the Pearson III distribution. 

In the graphs of Figure 3, these particular aspects of the method of ordinary 
moments and the least square method are presented. 

(a) MOM  (b) LSM 

Fig. 3. Comparative analysis for the Siret river. 
 
Among the five analyzed methods, the L-moments method is the recommended 

one, being more stable and robust for short data lengths. It also represents, along with 
the LH-moments method, the only parameter estimation methods that present clear 
selection criteria, namely the calibration of higher-order linear moments, with 
approximate relationships and graphs of variation of these two indicators. The LH-
moments method is also a method that, although it uses the series of maximum annual 
flows, it can be used as an alternative to the frequency analysis with partial series, 
fulfilling the same role, namely assigning a smaller weight to the lower extreme values 
(these are not always flood flows, but only maximum values corresponding to each year 
of analysis, representing the main disadvantage of using the block maximum/annual 
maximum method).  

4. Conclusions 

The Pearson III distribution is frequently used in hydrology, in Romania it is the 
parent distribution in flood frequency analysis. 

In Romania, in most cases, the Pearson III distribution is used using tabular 
calculation developed only for MOM, with inadequate linear interpolation. Moreover, 
it is used inappropriately (for basins larger than 100 km2). In recent materials [7,10,23], 
important contributions were made regarding the applicability of the Pearson III 
distribution, using the MOM and L-moments estimation methods. 

Considering the results obtained on the 6 case studies, the following conclusions 
can be drawn: 
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- the method of linear moments is a much more stable, robust method and less 
sensitive to the variability of recorded data lengths, as well as to the presence of outliers. 
It is the only method that has clear criteria for selecting the best distribution, namely the 
calibration of higher order indicators, thus being able to make a pre-selection of the 
necessary distributions taking into account the values of the two indicators specific to 
the analyzed set. The same observations are also valid for the LH-moments method, 
which also has the advantage of the fact that it partially fulfills the so-called "separation 
effect" of the maximum flows from the annual series of maximum flows (comparable 
to the analysis of partial series); 

- the Pearson III distribution cannot be applied, for skewness values greater than 
2, using the maximum likelihood method of parameter estimation. 

- the method of ordinary moments is recommended to be used only in the case of 
large data series (n>100 values), so that the correction of the skewness of the analyzed 
data set is minimal. The simplified approach of choosing skewness as 4 cannot be used 
for watershed larger than 100 km2; 

- the application of the Pearson III distribution using the least squares method is 
recommended to be performed only using the Hazen empirical probability, because after 
the comparative analysis it was observed that the biases compared to the theoretical 
values (population) are the smallest for this empirical probability. 

These elements presented in the article are part of a wider research carried out in 
the Faculty of Hydrotechnics, in the elaboration of some proposals for the 
implementation of the L-moments method, in the future regulations regarding the 
analysis of extreme events in Romania and abandoning the old Soviet practices of use 
of the Pearson III distribution and some non-tehnical concepts without a mathematical 
basis such as the uncertainty interval [24]. 
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